Нервные механизмы навигации

Одним из важных результатов подобных исследований является получение детальной информации об исходных сенсорных механизмах ориентирования. Поскольку каждая омматидия дорзального ободка содержит два набора фоторецепторов, способных воспринимать плоскость поляризации света, расположенных под определенным углом друг к другу, и поскольку каждая омматидия воспринимает небо под несколько различным углом, набор из множества омматидии обеспечивает мозг информацией о пространственном распределении векторов поляризованного света. Более того, можно рассчитать, каким образом будет реагировать эта система на разного рода нетипичные помехи. При изучении поведения использовались различные объекты, которые помещались на пути движения насекомого, вынуждая его отклоняться от первоначального пути и затем корректировать это отклонение. Другого рода помехой может быть перемещение муравьев в разное время суток, а также разного рода изменения поляризованного света, воспринимаемого ими. Одновременно с этим, точные электрофизиологические эксперименты для выявления интегративных механизмов в нейронах мозга муравья пока не могут быть выполнены по техническим причинам. Поэтому связь между входной сенсорной информацией и моторными командами у муравья остается пока неясной. Тем не менее, используя вычислительный подход на основе известных свойств нейронов, могут быть созданы модели и даже роботы, способные точно копировать ориентирование пустынного муравья при помощи поляризованного света.

Так как нейроны муравья очень малы, электрические сигналы были отведены Лабхартом с коллегами от интернейронов сверчка, получающих сигналы от фоторецепторов поляризованного света. Как и у муравьев и ракообразных, микроворсинки двух фоторецепторов сверчка расположены ортогонально: их отростки направляются к интернейрону с информацией о векторе поляризации света. Эти сигналы в точности копируют сигналы, предсказанные на основе поведенческих экспериментов с поляризованным светом.


Прочие статьи:

Глоссарий.
In vitro – выращивание растительных объектов «в стекле» (пробирке, колбе, биореакторе) на искусственных питательных средах в асептических условиях. In vivo – выращивание живого материала в естественных условиях. Эксплант – фрагмент ...

Ценометабионтные живые системы
Третий цикл структурной агрегации живых систем — ценометаби-онтный — состоял в агрегации метабионтов. Интегративная эволюция колоний метабионтов под действием тех же экологических причин, что и в колониях монобионтов, в ряде случаев приве ...

Приготовление окрашенных препаратов
Обработка предметного стекла. Прежде чем приступить к приготовлению микроскопических препаратов необходимо предметные и покровные стекла, Они должны быть чистыми и обезжиренными. Доказательства хорошего обезжиривания является равномерное ...